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Control of low-dimensional spatiotemporal chaos in Fourier space
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A method is proposed whereby spatiotemporal chaos with few degrees of freedom is controlled via
small and occasional feedback perturbations. The state of the system is monitored in Fourier space,
using the fact that a few major modes may account for the essentials of the dynamics. Several
unstable periodic orbits showing spatiotemporal structure are stabilized in the one-dimensional
Kuramoto-Sivashinsky equation in the chaotic regime. This equation constitutes a link between
dissipative systems displaying low-dimensional temporal chaos and the phase turbulence seen in a
class of extended systems described by partial differential equations.

PACS number(s): 05.45.+b, 47.52.4j, 82.20.Wt

The existence of spatiotemporal chaotic dynamics is
well established for a variety of physical as well as phys-
iologic systems [1,2]. In the recent literature on chaos,
one finds several reports on the control of chaotic sys-
tems. The most popular method is the one proposed by
Ott, Grebogi, and Yorke (OGY) [3], wherein very weak
occasional perturbations are applied to the system and
turn its erratic behavior into a periodic regime. This
feedback control uses the fact that the chaotic attrac-
tor has embedded in it an infinite number of unstable
periodic orbits (UPO’s) [4,5], some of which may be se-
lected for stabilization. Theoretical as well as experimen-
tal applications of this stabilization procedure are numer-
ous [6-9]. Most of the work cited above concerns systems
that can, in principle, be described by single maps or by
a few coupled ordinary differential equations. Chaotic
spatially extended systems have also been simulated and
controlled as coupled map lattices [10], a moderate size
network of Ginzbug-Landau oscillators [11], and model
cortical networks [12]. All these cases show distributed
control where units are individually acted upon. These
concepts were used in a two interconnected layer of oscil-
latory units mimicking brain dynamics [13]. It was shown
that stabilization of UPO’s may induce “attentive” states
that enable the model cortex to categorize patterns and
motion without previous learning.

In this paper, we address the problem of controlling a
class of space- and time-continuous systems described by
partial differential equations. The spatiotemporal chaos
considered arises from an instability in a small number
of spatial modes in an oscillatory medium. The system
evolves in a weakly nonlinear range and presents a phase
turbulence regime with no amplitude defects. We pro-
pose a global control of the phase in this regime as op-
posed to a local control of the amplitude in defect tur-
bulence [14]. Our approach consists of an extension of
the OGY method after an expansion in an appropriate
basis of space functions {¢;}. We consider a scalar func-
tion 9%(&,t) that completely determines the state of a
system described by A,¥ = 0 together with boundary
conditions. Here & and t are space and time variables,
respectively, and A, is a nonlinear operator containing
space and time derivatives and depending on parame-
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ters pu. We expand 9 = Y, a;(t) ¢;(£) and define a Eu-
clidean phase space spanned by the a;, where the dynam-
ics will be followed. Control of chaos will be performed in
the Fourier space thus defined. We further assume that
although the system is infinite dimensional, the corre-
sponding strange attractor can be spanned by few degrees
of freedom. The asymptotic dynamics is characterized
by a low-dimensional map F,: II — II in a hyperplane
II of the projection phase space spanned by the subset
{ai}iNzl, N being finite. This defines a Poincaré section in
Fourier space. UPO'’s of the original infinite-dimensional
system are identified as fixed points or discrete-time pe-
riodic orbits of the map F), on this Poincaré section. We
illustrate the stabilization method in the case where F),
is one dimensional and p is a scalar. Thus the continu-
ous time periodicity of the system can be related to the
discrete time periodicity of a single observable.

We consider the first-return map az(n+1) = Fy[az(n)],
based on the Poincaré section defined by a; = af’, d; < 0.
If unperturbed, the system dynamics is governed by F,.
A fixed point a} of this map corresponds to a period-one
orbit of the original system, and its instability is a con-
sequence of the condition |dF),/daz|a; > 1. Usually, the
exponential dynamics near aj is controlled by applying a
small perturbation to the parameter p during one period
of recurrence on the Poincaré section, and readjusting the
value of the perturbation on every recurrence according
to a simple feedback rule [3]. The procedure described in
Ref. [3] is not applicable here because the parameter per-
turbation introduces a high-dimensional transient that
typically lasts more than one recurrence period. There-
fore, transient time is too long for control adjustments
on every recurrence to succeed. An extension of the con-
trol method to high-dimensional systems was proposed
in [15], where one considers the past history of parameter
variations. Our algorithm relies only on the knowledge of
the present state of the system at the moment of control.
The prescription for control is as follows. If, at time n, a»
is in a linear vicinity of a3, apply a perturbation §u to p
during At, say one period of recurrence on the Poincaré
section. Then set du = 0 during m periods of recur-
rence. Although the perturbation du temporarily drives
the system away from the p attractor, if m is large enough
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the second step allows the system to relax back into the
original p attractor. The two-step procedure induces a
temporary map az(n + m + 1) = GMm*+V[ay(n),éu]. A
method for estimating G will be suggested in the se-
quel. &pu is chosen by solving a} = G(™+V[ay(n),du).
Notice that G(™+1)(ay,0) = F{™ " (a;). This action is
performed every (m + 1)th recurrence with different du
values so that the fixed point a} is effectively stabilized
regardless of the finite precision of the feedback. We
take the smallest values of m for which the u attractor
is repeatedly attained. m should not be made too large,
because that would imply that the system could not be
acted upon frequently enough to prevent it from escap-
ing control. Taking, e.g., m = 2, control actions can be
performed every three recurrences. Because at the be-
ginning of each control action the system is again in the
u attractor, a repetitive control algorithm can be applied
from there, regardless of the value of the previous control
perturbations éu. Without the m recurrences relaxation
time, the dependence of the control on previous parame-
ter perturbations would prevent it from having the simple
form seen above. We choose to stabilize fixed points of
a (m + 1)-return map F,Sm+l), where m is the same as
above. These include fixed points of maps of order lower

than (m + 1). For example, the fixed points of F,Sl) and
F,Sz) appear also as fixed points of F,£4). In other words,

a fixed point of F,S"H'l) is associated with an UPO of
the continuous system that crosses the Poincaré section
at most at (m + 1) different locations per orbit, so that
its actual period is at most (m + 1). We recall that the

points mapped by F,S""H) and G(™+1) lie in a Fourier
space and not in physical space.

The map G(™+1) is estimated locally by perturbing
during one recurrence an evenly distributed set of a,
points originally in the p attractor and close to a}, then
turning the perturbation off during m recurrences and
watching where the next iterate will be at the end of
these two combined actions. This is performed for a set
of small §u values. The map G{™*1) is then fitted via a
least-squares algorithm.

The actual stabilization of UPO’s is preceded by mon-
itoring the successive values ax(n). As indicated above,
the algorithm for control is applied when the linear vicin-
ity of a chosen fixed point a} is attained. This ensures
that small §u suffice for control, and, therefore, G(™+1)
is linear in §u. No control action is performed if the nec-
essary |pu| is greater than a maximum allowed |du|max-
The linearity condition renders the computation of the
ép simple. Defining daz(n) = az(n) — a3, we have, in the
vicinity of a3,

8G(m+1)

aG(m+1)
—a o op, (1)

daz(n+m+1) = 9a
2

daz(n) +
with the derivatives evaluated at éu=0, daz=0. No-
tice that (BG(m+1)/3a2)5#=0,5a2=0 = (dF,_(,,m+1)/d112)a; .
The quantity relevant for the stabilization is the gain
g = —(aG(m+1)/3u)/(dF‘Sm+1)/dag), with the deriva-
tives evaluated as indicated. Equating Eq. (1) to zero, we
get the feedback law at iteration n, §u = g~ 18az(n). Al-
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though the linearity assumption is not essential, it allows
for an easier generalization to higher-dimensional control.
As an effect of control, az(n) becomes (m+1) periodic.
This results in all a;(t) becoming time periodic, which,
in turn, implies time periodicity of ¥ (Z,t).

We illustrate the stabilization method described above
with the well-known Kuramoto-Sivashinsky equation
(KSE) [1], which is an example of low-dimensional
chaotic behavior with one spatial degree of freedom.
The KSE appears in several physical contexts (see
Refs. [16,17] and references therein), namely in the mod-
eling of diffusion-induced phase turbulence [1], and it
reads

ou , o o'u  (9u\’ _ 0
5t "oz T et (5;) =0 2)
where —L/2 < z < L/2 and o is the diffusion coefficient.
The real field 4 appearing in the KSE can be taken to rep-
resent the long-wavelength phaselike deviation from some
reference structure. The related amplitudelike deviation
can been viewed as constant, or at least adiabatically de-
pendent on the longer time-scale phase deviation, so that
it does not enter the evolution equation. The boundary
conditions are 8% /0z = 834 /823 = 0 for x = £L/2. Tt is
easily seen that the space average (4)(t) is increasing in
time. In order to avoid this drift, we define a new func-
tion u(x,t) = @(x,t) —(@#)(t). The function u is expanded
in Fourier modes as [1]

wa,t) =3 [A,- () cos (”T”x)

o (B0 o

where A;(t) = (2/L) _Ll/jz u(z,t) cos{[2jn/L]z} dz and

B;(t) = (2/L) [£17, u(z,t)sin{[(2j — 1)7/Llz} dz with
j = 1,2,... . Hence we project the general nonlinear
dynamics in the basis of normal modes of the linearized
space operator of Eq. (2). This is a natural choice in a
weakly nonlinear range and amounts to a clear represen-
tation. A Euclidean space with a restricted number of
Aj; and Bj coordinates can then be defined. The uniform
mode Ag is absent due to the drift correction. It can be
shown that Ay does not influence the evolution of the
remaining modes.

For L = 10.1 and o = 2.5, Eq. (2) exhibits spa-
tiotemporal chaos. To characterize this chaos, we con-
sider a Poincaré section in Fourier space, defined by
A; = AP = 3.16, A; < 0. Measuring the values Az(n) at
successive crossings of the Poincaré hyperplane, we find
that they are randomly distributed and that accordingly
the return maps A;(n + k) = Fék)[Az(n)] are chaotic.
Figure 1 shows the first-return map of A;. Although this
and higher order maps are not unimodal, not all branches
are of interest for control. The system must stay on the
same branch for a few iterations and exhibit exponential
divergence from a fixed point, if uncontrolled. The transi-
tion between branches obeys to a well-defined sequence.
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FIG. 1. Chaotic first-return map Az(n+1)=F,[A2(n)] on
the Poincaré section A;=AF=3.16, A;<0. The A; are the
Fourier expansion coefficients of u, as defined in Eq. (3). Pa-
rameter values of the KSE are L = 10.1 and o = 2.5. F, is
two valued for all A2 < —1.19. The leftmost intersection of
the bisectrix A2(n + 1) = Az(n) with F, corresponds to the
fixed point A3 = —1.2035.

For example, in Fig. 1 the exponential dynamics away
from the fixed point A3 can be seen as successive points
along the leftmost branch of F, and close to (A}, A3)
(not shown). It is preceded by a single point in the right-
most branch of the map, with ordinate value close to Aj.
Similar behavior is also observed with higher order maps.

Control of the chaotic regime is performed by way of
the procedure outlined above. o in Eq. (2) is the con-
trol parameter and is, therefore, allowed to have small
departures do from its nominal value of 2.5. As ex-
plained above, maps of order higher than one are required
by the method. We first plot Fc(,B) and Fé‘l) when the
system evolves unperturbed in the original o attractor.
We consider three fixed points of Féa) for stabilization.
They correspond, respectively, to period-one, -three, and
-six UPO’s of the full system. For the period-one and
-three UPO’s, all modes A; and B; have the same pe-
riod. For the period-six UPO, the A; modes have period
three, whereas the B; modes have period six. Nonethe-
less, the sinus modes of this period-six UPO present the
time symmetry B;(n+ 3) = —B;(n). Analogously, three
fixed points of Fy) are considered. These correspond,
respectively, to period-one, -four, and -eight UPQO’s. The
period-one UPO is the same as identified from F®.
The time symmetries are now A;(n + 2) = Aj(n) and
Bj(n + 2) = —Bj(n) for period four, and A4;(n + 4) =
Aj(n) and Bj(n + 4) = —Bj(n) for period eight. We re-
call that the maps Fék) are based on A; and A, alone.
Inspection of A; and B; dynamics indicates that there is
no period-two UPO of Eq. (2) with the parameter values
considered.

Table I displays five stabilized orbits with different pe-
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FIG. 2. Stabilization of five different UPO’s in the KSE.
Discrete time series of the Fourier coefficient B; from Eq. (3),
at the Poincaré section A;=AF=3.16, 4, <0. Parameters are
as in Fig. (1). From left to right: chaos and orbits of periods
1, 3, 4, 6, and 8. Notice the modified vertical scale.

riods. The maximum allowed |§o| is different for each
orbit. The largest |§0|max is 0.3% of the nominal value
of o, and is used with the period-four UPO. The period-
six and -eight UPOQO’s are stabilized with the help of maps
G® and G®, respectively. That is, in these two cases,
control actions are performed twice per orbit, which al-
lows for moderate values of |§0|max- We concatenate in
Fig. 2 the plots of B;(n) corresponding to the UPQO’s
listed in Table I. One sees, successively, chaotic behavior
and stabilized orbits of period one, three, four, six, and
eight. Figures 3 and 4 show, respectively, period-one and
-three orbits, represented in the space of Eq. (2). Let us
note that, for each of the orbits displayed in Figs. 3 and 4,
another solution of Eq. (2) exists that is its mirror image
around z = 0. On the other hand, the period-four, -six,
and -eight UPO’s listed in Table I are their own mirror
image around z = 0.

We have shown that space-continuous extended sys-
tems displaying phase turbulence can be stabilized via a
small adjustable feedback perturbation, into highly struc-
tured spatiotemporal regimes that are time periodic. In
our approach the state of the system is monitored in

TABLE I. Quantities associated with the stabilization of
the five orbits depicted in Fig. 2: discrete period of the UPO,
order k of the maps F{*) and G™ used in the identification
and stabilization of the UPO, period T of the orbit, fixed
point A3 around which control is performed, gain g of the
perturbation, and maximum allowed perturbation |§0|max-

Period Maps T A3 g |60 | max
1 3 4.70 -1.2035 -0.050 6.0x1073
3 3 14.0 -1.1850 0.158 1.9x1073
4 4 18.6 -1.1940 0.040 7.5%x1073
6 3 27.8 -1.1886 0.104 2.9x1073
8 4 37.3 -1.1920 0.063 4.7x1073
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FIG. 3. Space-time diagram with one complete period-one
orbit of the KSE. Scale is 13.0 for the u axis, 10.1 for space
z, and 4.70 for time ¢. Time increases downwards.

Fourier space. Control of the flow associated with the
time evolution of the Fourier coefficients induces a time
periodic variation of the original system in physical space.
It should be observed that the stabilization technique is
more efficient whenever the system size is not large com-
pared to the spatial correlation length. This is the case of
the KSE with the parameter values considered, where a
small number of modes with wavelengths comparable to
the system size dominate. Difficulties of a technical na-
ture arise in the control process as more modes contribute
to the dynamics. Increasingly higher-dimensional control
is required, and the use of a quasi-unidimensional map as
part of the control algorithm may not suffice. Nonethe-
less, spatial normal modes appear to be the natural vari-
ables of the dynamics in “weakly nonlinear” regimes, in-
stead of local quantities such as u(z;) for a set {z;}, each
involving contributions from a number of those modes.
The performance of the (m+1)-return map control relies
to some extent on the ordering of characteristic times,
and it is optimal if the convergence to the strange at-
tractor is fast when compared to the exponential diver-
gence from the embedded UPO. However, this is not a
critical condition, inasmuch as the transient dynamics

FIG. 4. Space-time diagram with one complete pe-
riod-three orbit of the KSE. Scale is 13.1 for the u axis, 10.1
for space z, and 14.0 for time t. Time increases downwards.

between successive re-entries of the attractor is incorpo-
rated into the control map, and one does not simply wait
passively for the transients to end. During those small
transients, the system, in fact, performs moderate excur-
sions from the controlled fixed point. These excursions
are not harmful for control because they are rather lim-
ited in phase space and at the end of each (m+1) periods
of recurrence the system is again in a close vicinity of the
fixed point. No extraneous periodic orbits are introduced
by the stabilization procedure. As noted in Ref. [3], the
method of control can be applied even if the evolution
equations of the system are not available. The method
could be applied to experimental systems where a time
series is monitored in a phase space spanned by Fourier
coefficients, given that a parameter be accessible for small
variations.
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